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Abstract

In this paper, we present the new particle swarm optimization algorithm by defining the
inertia weight which depends on linearly the iteration step for solving the unsaturated soil
water problem. By comparing with the exist particle swarm optimizations such as such as
PSO algorithm, FPSO algorithm, P-PSO-SA algorithm and IDWPSO algorithm, numerical
experiments verify that our proposed algorithm is more efficient and accurate to reach the
optimal solution in the multimodal function extremum problem. Combining the characteristic
difference method, our algorithm is applied to solve the unsaturated soil water problem.
Numerical experiments show that our algorithm is quicker and more precision to approximate
the exact solution.

Keywords: Particle swarm optimization; Unsaturated soil water; Inertia weight;
Characteristic difference; Parameter identification.

1. Introduction1

The unsaturated soil water flow (see [2, 3, 11, 17, 23]) is an important form of flow in2

porous media and is widely used in atmospheric science, soil science, agricultural engineer-3

ing, environment engineering and groundwater hydrology, etc. Because of the nonlinearity of4

water content equations and the complexity of physical parameters and boundary conditions,5

it is very difficult and impossible to obtain its analytical solution. Some numerical schemes6

[11, 12, 10] are been developed for solving the unsaturated soil water flow problem. Paper7

[11] presented the general difference methods for one-dimensional unsaturated soil water flow8

problem. Paper [10] proposed the efficient reduced-order finite volume element formulation9

based on proper orthogonal decomposition method for solving two-dimensional unsaturated10

soil water flow problem. By the Crank-Nicolson extrapolation method, paper [21] presented11

the time second-order proper orthogonal decomposition method. Paper [9] considered con-12

forming finite element discretizations based on a multiscale formulation along with recently13

developed, local postprocessing schemes. Paper [5] proposed the enriched Galerkin method,14
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which augments piecewise constant functions to the classical continuous Galerkin finite ele-15

ment method. By employing a coarse partition of the fine grids and multiscale basis function16

for mapping the fine-scale information to the coarse-scale unknowns, paper [13] proposed17

a Multiscale Locally Conservative Galerkin (MsLCG) method to accurately simulate mul-18

tiphase flow in heterogeneous and fractured porous media. Paper [6] proposed an element19

based post-processing technique through which local conservation can be established. Using20

the property of local conservation at steady state conditions to define a numerical flux at21

element boundaries, Paper [14] proposed a locally conservative Galerkin (LCG) finite element22

method for two-phase flow simulations in heterogeneous porous media.23

As is known that the above numerical schemes were solved the the unsaturated soil water24

flow problem depend on the assumption that the hydraulic conductivity and diffusivity is25

known. However, the hydraulic conductivity and diffusivity could not given in advance in26

the unsaturated soil water flow in the porous media which is only the empirical function.27

Thus, it is very necessary to propose an efficient algorithm to solve the hydraulic conductivity28

and diffusivity. Particle swarm optimization (PSO) algorithm which had the advantage of29

fast convergence, good robustness and strong versatility have bee widely used in scientific30

research and engineering.31

With the in-depth application of particle swarm optimization, the limitations of tradition-32

al PSO algorithms have been discovered one after another, such as premature convergence or33

non-convergence, dimensionality disaster, and easy to fall into local extreme values. Paper34

[1] presented the particle swarm optimization algorithm by using chaotic mapping logic to35

initialize the population of particle swarm optimization algorithm. Paper [16] proposed an36

intelligent fuzzy level set method and an improved quantum particle swarm optimization37

algorithm with global search capability are proposed. Paper [25] developed a new algorithm-38

Improved quantum evolutionary PSO (IQEPSO) while the learning factor and inertia factor39

varied with the number of iterations.40

Recently, by changing the learning factor synchronously and combining simulated anneal-41

ing algorithm, paper [8] proposed a balance between particle inertia and optimal behavior42

by linearly adjusting the learning factor. Paper [20] developed the coupling OD with IP-43

SO (ODIPSO) algorithm. Paper [19] presented an improved multi-objective particle swarm44

optimization algorithm to solve the workflow scheduling problem. Paper [7] proposed a par-45

ticle swarm optimization algorithm with two evolutionary operators of multiple crossover46

operator and swarm operator combined with genetic algorithm. Paper [15] studied a novel47

multi-objective self-organizing particle swarm optimizer to solve multiple objective functions.48

Paper [24] presented a stochastic cognitive superiority leading particle swarm optimization49

(SCDLPSO) algorithm.50

The existing particle swarm optimization algorithm for solving the parameters of unsat-51

urated soil water flow is not efficient and accurate, and there exists some difficulty as well.52

As a result, it is important to propose the efficient particle swarm optimization algorithm.53

In this paper, we first develop a new inertia weight which depends linearly on the iterations.54

Our proposed PSO algorithm is rather simple in calculation. Five test functions are used to55

verify our algorithm by comparing with other four algorithm such as PSO, FPSO, P-PSO-SA56

and IDWPSO. Due to the advantage in convergence speed and accuracy, our algorithm is57

applied to solve the unsaturated soil water flow. The one-dimensional unsaturated soil water58
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flow equations (nonlinear parabolic equation) is transformed into the advection diffusion e-59

quation by defining v = dK(θ)
dθ

. Applying the characteristic difference method, we propose an60

efficient swarm optimization algorithm to identify the hydraulic conductivity and diffusivity61

parameters parameters. Numerical results show that our algorithm is nicer than the classic62

PSO.63

The rest of this paper is organized as follows. In Section 2, a new particle swarm optimiza-64

tion algorithm is presented, where we test our algorithm by comparing with other four PSO65

algorithm. We apply our algorithm to identifying the hydraulic conductivity and diffusivity66

parameters in the unsaturated soil water in Section 3. the conclusion is given in Section 4.67

2. Particle swarm optimization algorithm68

The Particle swarm optimization (PSO) algorithm originally proposed by Kennedy and
Eberhart was used to discuss the social behavior of organisms such as birds flocking and
fish schooling, coupled with swarm theory. Just like many other evolutionary computation
techniques, an initial population of random potential solutions were given at first while
the optimal fitness solution was searched according to its optimization mechanism, particle
improvement, and swarm evolution, through an iterative computation. The conventional
particle swarm optimization algorithm is described as follows,

xi+1 = xi + vi, (1)

vi+1 = wivi + c1 rand (pbesti − xi) + c2 rand (gbesti − xi) , (2)

wi = wmin + (wmax − wmin) i/k. (3)

where, xi and vi is the position and velocity of the particles in the i−th iteration, respectively.69

k is the number of iterations, c1 and c2 are learning factors and pbesti, gbesti is the historical70

optimal position and the global optimal position. wi is the inertia weight factor of the i−th71

iteration and wmax and wmin are the maximum and minimum inertia weight factors. k is the72

number of iterations.73

As is known that the inertia weight which determines directly the iteration step and the
robustness of solutions is an important parameter in particle swarm optimization. As is
generally agreed, the larger the search step is and the stronger the global search capability
is. On the contrary, the stronger the local search ability of the particle. Thus, it is very
challenging and valuable to improve the inertia weight. In this paper, we present a new
inertia weight which depends linearly i as follows,

wi =
wmin

1−
wmax−wmin

wmink

i, (4)

where we take wmax = 0.5 and wmin = 0.1.74

3
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2.1. Test function75

In order to verify the performance of our proposed inertia weight, five test function-76

s are used to test it. Meanwhile, our simulation results are also compared with standard77

particle swarm optimization[18] (PSO), a particle swarm optimization algorithm based on78

compression factor[4] (FPSO), a hybrid particle swarm optimization algorithm combined79

with adaptive inertia weight [25](P-PSO-SA) and a hybrid particle swarm optimization al-80

gorithm that dynamically adjusts inertia weight[22] (IDWPSO). The optimal value of each81

test function was solved 50 times by using these five algorithms respectively. Define absolute82

error=� x∗ − x �2, where x∗ is Gbest value point and x is the optimal value point.83

Test function 1. The function with many steep peaks is consider as follow,

f (x1, x2) = sin x1 sin x2 sin (x1 + x2) , x1, x2 ∈ [−4, 4] . (5)

By calculating derivatives, we can solve the maximum point
(

π
3
, π
3

)

,
(

π
3
,−2π

3

)

and
(

−2π
3
, π
3

)

84

and the maximum value is 3
√
3

8
. The 3-D surface of the function (5) is given in Figure 1.85

Figure 1: The surface of the function f(x1, x2)
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We can find that there are many local optimum values (peak) by Figure 1. Thus, how86

to jump out of the local optimum and reach the maximum fast is very important. In the87

following, we will show our scheme (IIWPSO) is more advantage in convergence speed and88

accuracy by comparing with the above four particle swarm optimization algorithms in Figure89

2 and Table 1.90
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Figure 2: The fitness value of five particle swarm optimization algorithms.

Table 1: The results of five particle swarm optimization algorithms

Methods Average number
of iterations

Average
time

Gbest value point Absolute
error

PSO 50 0.0511 (1.047199, -2.094397) 2.3875E-06

FPSO 48 0.0550 (1.043701, -2.093059) 3.7431E-03

P-PSO-SA 32 0.1369 (-2.102588, 1.053358) 1.0251E-02

IDWPSO 50 0.8646 (1.047148, 1.047273) 9.0265E-05

IIWPSO 23 0.0384 (1.047198, -2.094395) 4.6034E-07

We can see that the optimal solutions obtained by P-PSO-SA and IDWPSO are only the91

local optimal solutions in Table 1. Compared with PSO and FPSO, our IIWPSO algorithm92

is the fastest in convergence speed and the shortest in cost of time. Thus, our algorithm is93

superior to other four algorithms in accuracy and convergence.94

Test function 2. The global optimum of Rosenbrock function (Figure 3) is located in a
long and smooth valley which is difficult to find the optimal solution of the function.

f (x1, x2) = 100 (x2 − x2
1)

2
+ (1− x1)

2 , x1, x2 ∈ [−5.12, 5.12] . (6)

By calculating derivatives, we can solve the minimum point x = (1,1) and the minimum value95

0.96
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Figure 3: The surface of the function f(x1, x2)

We see clearly that the global minimum of the function is also located in a parabolic97

valley which is easier to find, but it is quite difficult to search the global minimum because98

that the values vary much slower in the valley.99

Table 2: The results of five particle swarm optimization algorithms

Methods Average number
of iterations

Average
time

Gbest value point Absolute
error

PSO 49 0.0243 (0.999998, 0.999998) 2.8284E-06

FPSO 32 0.0223 (1.008236, 1.017707) 1.9329E-02

P-PSO-SA 27 0.0674 (1.036690, 1.073482) 8.2133E-02

IDWPSO 44 0.0837 (1.000941, 1.002044) 2.2502E-03

IIWPSO 43 0.0256 (1.000000, 1.000000) 0

By Table 2, we can see that our IIWPSO is the fastest to reach the global minimum point.100

Test function 3. The Rastrigrin function is a typical nonlinear multi-mode function,
and its peak shape shows the appearance of high and low fluctuation and jump.

f (x1, x2) = 20 + x2
1 − 10 cos (2πx1) + x2

2 − 10 cos (2πx2) , x1, x2 ∈ [−5.12, 5.12] . (7)

The minimum point is (0,0) and the minimum value is 0. The 3-D surface of the function101

(7) is given in Figure 4.102
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Figure 4: The surface of the function f(x1, x2).

Table 3: The results of five particle swarm optimization algorithms

Methods Average number
of iterations

Average
time

Gbest value point Absolute
error

PSO 50 0.0259 (0.000002, 0.000002) 2.8284E-06

FPSO 34 0.0211 (0.003568, -0.000075) 3.5688E-03

P-PSO-SA 35 0.0545 (0.004182, 0.000300) 4.1928E-03

IDWPSO 30 0.0480 (0.000037, -0.000170) 1.7398E-04

IIWPSO 23 0.0203 (0.000000, -0.000000) 0

By Table 3, we can see clearly that our IIWPSO reaches the minimum value fastest and103

the absolute error is 0 by compared with the other four algorithms.104

Test function 4. The Griewank functions have many local minima, and the number of
local minima is related to the dimension of the problem.

f (x1, x2) =
(x2

1
+x2

2)
4000

− cosx1 cos
(

x2√
2

)

+ 1, x1, x2 ∈ [−10, 10] . (8)

The 3-D surface of the function is shown in Figure 5 and the minimum point is (0,0) and the105

minimum value is 0.106

7
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Figure 5: The surface of the function f(x1, x2)

The Griewank function has many widespread local minima, which are regularly distribut-107

ed.108

Table 4: The results of five particle swarm optimization algorithms

Methods Average number
of iterations

Average
time

Gbest value point Absolute
error

PSO 50 0.0213 (0.000000, 0.000000) 0

FPSO 20 0.0225 (-0.000148, -0.003603) 3.6060E-03

P-PSO-SA 50 0.0592 (0.050740, -0.026887) 5.7424E-02

IDWPSO 47 0.0496 (0.000175, 0.000048) 1.8146E-04

IIWPSO 18 0.0228 (0.000000, 0.000000) 0

Table 4 shows that our IIWPSO algorithm changes smoothly in the whole optimization109

process and jumps out of the constraint of local extreme value quickly to reach the global110

minimum.111

Test function 5. The Beale function is a multi-peak non-convex continuous function

8
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defined in two dimensions with sharp peaks in the corner of the input field.

f (x1, x2) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2
+ (2.625− x1 + x1x

3
2)

2
, x1, x2 ∈ [−10, 10] .

(9)
The minimum point and the minimum value is solved at (3,0.5) and 0, respectively.112

Table 5: The results of five particle swarm optimization algorithms

Methods Average number
of iterations

Average
time

Gbest value point Absolute
error

PSO 50 0.0193 (2.999999, 0.500000) 1.0000E-06

FPSO 36 0.0192 (3.004467, 0.500143) 4.4693E-03

P-PSO-SA 50 0.0556 (3.012026, 0.508447) 1.4696E-02

IDWPSO 34 0.0472 (3.000248, 0.500009) 2.4816E-04

IIWPSO 39 0.0224 (3.000000, 0.500000) 0

We can find that FPSO, IDWPSO and our IIWPSO algorithms have the similar average113

speed in Table 5, but only our IIWPSO can reach the minimum point.114

3. The unsaturated soil water flow problem115

3.1. Equations116

Soil water content is an important climate factor, and its seasonal change has an important
influence on weather and climate at mid-high latitudes. Hydraulic processes at surface and
subsurface, such as precipitation, evaporation, and evapotranspiration, seepage of surface
water, and capillary elevation of deep-level water, absorption in root zone and liquid moisture
flow of groundwater, all can be reduced to unsaturated flow problems. In fact, in all studies
(see papers [2, 3, 17, 23, 11]) of the unsaturated zone, the fluid motion is assumed to obey the
classical Richards equation. Based on horizontal resolution of a general circulation model,
liquid moisture flow in soil along horizontal direction may be ignored. The one-dimensional
unsaturated soil water flow equations with the absorption rate of root are considered as

∂θ
∂t

= ∂
∂z

�

D(θ)∂θ
∂z

�

− ∂K(θ)
∂z

+ Sr, (10)

where θ(z, t) is soil moisture, D(θ) is the soil water diffusivity, K(θ) is the unsaturated117

hydraulic conductivity, −Sr is absorption rate of root zone.118

Initial conditions are given as
θ = θa, (0, z).

The first kind of boundary conditions are given as






θ = θb, (t, 0),

θ = θa, (t, L),
(11)

9
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The empirical formulas of unsaturated hydraulic conductivity and diffusivity are given as
follows,

D(θ) = D0

(

θ − θr
θb − θr

)b

, (12)

K(θ) = Ks

(

θ − θr
θb − θr

)m

. (13)

In the fact engineering problem, the parameters b and m are empirical constants, which have119

effect on the quality of the solution. Thus, it is an important to develop the efficient method120

to predict the parameters b and m.121

3.2. Characteristic difference method for solving the soil moisture122

The equation (10) is rewritten as the following nonlinear advection-diffusion equations

∂θ
∂t

= ∂
∂z

(

D(θ)∂θ
∂z

)

− dK(θ)
dθ

∂θ
∂z

+ Sr, x ∈ [0, L], t ∈ [0, T ]. (14)

Let ∆z = L
N

and ∆t = T
M
, M and N are positive integers. Define the staggered meshes as

xi = i∆z, i = 0, 1, · · · , N, xi+ 1

2

= (i+ 1
2
)∆z, i = 0, · · · , N − 1,

Let fi = f(xi), fi+ 1

2

= f(xi+ 1

2

) at the mesh points (xi) and (xi+ 1

2

). Define the following
difference operators as

δzfi+ 1

2

= fi+1−fi
∆z

, δzfi =
f
i+1

2

−f
i− 1

2

∆z
.

Now, we introduce the following nodes,123

z̄i = zi −
dK(θ)i

dθ
∆t, i = 1, · · · , N − 1.

In general, we assume that the point z̄i falls between zi−1 and zi+1. Define Θ̄n
i with the124

quadratic interpolation as follows,125

Θ̄n
i =

λ2
i

2
(Θn

i+1 +Θn
i−1) + (1− λ2

i )Θ
n
i +

λi

2
(Θn

i+1 −Θn
i−1), (15)

where λi = −dK(Θ)i
dΘ

∆t
∆z

. Let Sr = 0. Now, we will present our characteristic difference method
for solving the the soil water flow as

Θn+1

i −Θ̄n
i

∆t
=

Dn+1

i+1
2

(Θn+1

i+1
−Θn+1

i )−Dn+1

i− 1
2

(Θn+1

i −Θn+1

i−1 )
∆z2

, (16)

where Dn+1
i+ 1

2

= D(Θn+1
i+ 1

2

) and Θn+1
i+ 1

2

=
Θn+1

i+1
+Θn+1

i

2
.126

The equation (16) can be written as

−rDn+1
i− 1

2

Θn+1
i−1 +

[

1 + r
(

Dn+1
i− 1

2

+Dn+1
i+ 1

2

)]

Θn+1
i − rDn+1

i+ 1

2

θn+1
i+1 = Θ̄n

i , (17)

10
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where r = ∆t
(∆z)2

. Let







ai = −rDk+1
i− 1

2

, i = 1, 2, · · · , N,

bi = 1 + r
�

Dk+1
i− 1

2

+Dk+1
i+ 1

2

�

, i = 1, 2, · · · , N − 1.
(18)

We can obtain the matrix form of (17) (A Θ =H), i.e.,




























b1 a2 0 0 0

a2 b2 a3 0 0
. . .

. . .
. . . 0 0

0
. . .

. . .
. . . 0

0 0 aN−2 bN−2 aN−1

0 0 0 aN−1 bN−1

























































Θn+1
1

Θn+1
2

...

...

Θn+1
N−2

Θn+1
N−1





























=





























h1

h2

...

...

hN−2

hN−1





























, (19)

where h1 = Θ̄n
1 − a1θb, hN−1 = Θ̄n

N−1 − aN−1θa and hi = Θ̄n
i (i = 2, 3, · · · , N − 1).127

Remark 1. By (19), it is obviously that our coefficient matrix A is strictly diagonally domi-128

nant (| bi |>| ai | + | ai+1 |) and symmetry. Thus, we can prove that A is symmetric positive129

definite and the scheme (16) exists the only numerical solution.130

3.3. The parameters identification optimization method131

In the section, we construct the algorithm for identifying the parameters such as b and
m. In order to more convenient and efficient to predict, we assume that θji is the only exact
solution by the characteristic difference. θji (b,m) is the numerical solution with the different
choice of b and m in the particle swarm optimization which is solved by the characteristic
difference. In order to more accuracy to predict the parameter b andm, the following objective
function is chosen as

minZ =

�

�M

j=1

�N−1
i=1

�

θ
j
i−θ

j
i (b,m)

θ
j
i
(b,m)

�2

/M, (20)

and the constraints condition are given as

bmin ≤ b ≤ bmax, mmin ≤ m ≤ mmax. (21)

Next, we propose our algorithm as follow,132

Step 1. Generating randomly l− particles determined by position vector xα and velocity
vector vα,

xα = x (bα, mα) , vα = v (bα, mα) , α = 1, 2, · · · , l. (22)

Step 2. Computing the diffusivity and hydraulic conductivity of each particle as

D(Θ) = D0

�

Θ− θr
θb − θr

�bα

, K(Θ) = Ks

�

Θ− θr
θb − θr

�mα

. (23)

11
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Step 3. Computing the soil water content {Θn
i } by combining the characteristic difference

method with the above diffusivity and hydraulic conductivity as

Θn+1

i
−Θ̄n

i

∆t
=

Dn+1

i+1
2

(Θn+1

i+1
−Θn+1

i )−Dn+1

i− 1
2

(Θn+1

i −Θn+1

i−1 )
∆z2

. (24)

Step 4. Calculating the fitness value of the each particle Zα as

Zα =

√

∑M

n=1

∑N−1
i=1

(

θni −Θn
i

Θn
i

)2

/M, (25)

where θni is the exact solution.133

Step 5. Identifying the optimal value pbest of each particle and the optimal value gbest134

of all particles. By comparing the smaller between Zk
α and Zk−1

α of each particle in the135

current k−iteration, we determine the new fitness value Zk
α and the local optimal pbestk. By136

comparing Zk
α with all the swarm particle, we determine the optimal value gbestk.137

Step 6. The position vector xk, velocity vector vk and the inertia weight factor wk of the
each particle in the k−iteration are updated as

xk+1 = xk + vk,

vk+1 = wkvk + c1 rand (pbestk − xk) + c2 rand (gbestk − xk) ,

wk =
wmin

1−
wmax−wmin

wminK

k.

(26)

Step 7. If k < K and Zk
α > ε0, go to Step 2-6.138

3.4. Numerical experiments139

In the section, we will verify our algorithm efficiently by some experiments. Table 6 shows140

the fitness value and the approximation b̄ and m̄ with the different parameters b and m by141

comparing our algorithm IIWPSO with PSO when the particle number l = 30.142

12
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Table 6: The PSO and IIWPSO algorithm under the different b and m

b m Algorithm b̄ m̄ Z

2 10
PSO 2.0006 9.5949 3.5E-03

IIWPSO 2.0000 9.9440 5.2E-05

4 6
PSO 4.0004 5.7636 2.0E-03

IIWPSO 3.9999 6.1114 6.7E-04

8 3
PSO 8.0018 2.7622 7.3E-03

IIWPSO 8.0004 2.9462 1.6E-03

12 7
PSO 11.9999 6.6986 1.4E-03

IIWPSO 12.0000 7.1438 1.1E-04

18 8
PSO 18.0000 7.8264 8.5E-05

IIWPSO 18.0000 8.0754 7.6E-05

21 2
PSO 20.6965 2.7163 1.1E-02

IIWPSO 20.8786 2.1764 6.4E-03

It is seen clearly that the solutions obtained by our IIWPSO algorithm are more accurate143

than PSO under different measured conditions.144

Next, we take b = 8 and m = 3 as an example to test the fitness value with the iteration145

k in Table 7.146
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Table 7: The PSO and IIWPSO algorithm with the different iteration.

k Algorithm b̄ m̄ Z

1
PSO 8.6686 3.2082 1.6

IIWPSO 8.2340 4.6597 9.5E-01

2
PSO 8.2411 4.7366 9.7E-01

IIWPSO 8.0228 2.6932 1.7E-01

4
PSO 8.0096 4.9367 1.2E-01

IIWPSO 8.0030 5.9479 7.7E-02

8
PSO 7.9993 3.2518 3.2E-03

IIWPSO 7.9996 3.0843 1.4E-03

16
PSO 7.9993 3.2518 3.2E-03

IIWPSO 8.0003 2.9281 1.0E-03

32
PSO 7.9992 3.1544 3.1E-03

IIWPSO 8.0000 3.0739 2.8E-03

50
PSO 7.9995 3.1098 1.6E-03

IIWPSO 8.0002 2.9640 9.9E-04

We can find that the fitness value gets smaller remarkable when k becomes bigger from 1 to147

16. Meanwhile the number of the iteration exceeds 16, the fitness value is almost invariable.148

It is clearly that our IIWPSO algorithm is superior to the PSO algorithm and quicker to149

approximate the exact solution.150

By Figure 6 and Figure 7, we can see clearly that our IIWPSO algorithm is quicker to151

reach the exact solution. The fitness value reaches to 5.9E-03 when the iteration k = 2 while152

the iteration k = 16 by using the PSO algorithm.153
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Figure 6: Fitness variation diagram of PSO
Figure 7: Fitness variation diagram of improved
PSO.

Thus, our IIWPSO algorithm can identifying well the parameters such as b and m.154

4. Conclusion155

In this paper, we propose a new particle swarm algorithm (IIWPSO) for solving the un-156

saturated soil water problem by combining the characteristic difference method. Firstly, we157

test the efficiency of our algorithm compared with the other four algorithms such as PSO158

algorithm, FPSO algorithm, P-PSO-SA algorithm and IDWPSO algorithm. Numerical ex-159

periments verify that our IIWPSO algorithm has the faster convergence speed and the better160

performance in the optimization, and is easier to obtain a suitable solution. Secondly, by com-161

bining the characteristic difference method, we apply our IIWPSO to identify the hydraulic162

conductivity and diffusivity parameters. It is clear that our algorithm has more advantage163

in simulating the the unsaturated soil water problem and other engineering problem.164
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